

Developing Photocatalyst by Post-Synthetic Modification Metal-Organic Frameworks

Tapas K. Maji

Chemistry and Physics of Materials Unit, School of Advanced Materials,

Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India

Email: tmaji@jncasr.ac.in

The much-needed renewable alternatives to fossil fuels can be achieved efficiently and sustainably by converting solar or mechanical energy to fuels via hydrogen generation from water or CO₂ reduction. Sunlight-driven H₂ production and CO₂ reduction are promising routes for the production of chemical feedstocks as fuel precursors to mitigate the CO₂ concentration in the atmosphere and also to alleviate the global energy crisis.¹⁻⁴ Nature's design of carrying out the photosynthetic redox cycle involving CO₂ and water inspired us to develop highly efficient integrated catalytic systems for artificial photosynthesis. The versatile and highly amenable structural tunability of metal-organic frameworks (MOFs) by post-synthetic modification (PSM) allows for tailoring inherent semiconducting and optoelectronic properties, compared to traditional inorganic semiconductors. Besides, PSM is an excellent choice for introducing a functional photosensitizer into the MOF matrices to galvanize the electronic, optical and piezoelectric properties towards H₂O and CO₂ reduction.¹⁻² Our presented results demonstrated an excellent approach to green H₂ production and carbon neutralization for tackling the energy crisis.¹⁻⁶ The groundbreaking contributions to the design and development of metal-organic frameworks (MOFs) were globally acknowledged when the 2025 Nobel Prize in Chemistry was awarded, marking a milestone recognition of MOFs as one of the most important families of functional materials in modern chemistry and materials science.

My talk will focus on their broad significance as functional materials and on advancing integrated photocatalytic systems through post-synthetic modification of MOFs for H₂O and CO₂ reduction.

References:

- [1] Karmakar, S.; Barman, S.; Rahimi, F. A.; Maji, T. K. *Energy Environ. Sci.*, **2021**, *14*, 2429.
- [2] Karmakar, S.; Barman, S.; Rahimi, F. A.; Biswas, S.; Nath, S.; Maji, T. K. *Energy Environ. Sci.*, **2023**, *16*, 2187.
- [3] Verma, P.; Singh, A.; Rahimi, F. A.; Sarkar, P.; Nath, S.; Pati, S. K.; Maji, T. K. *Nat. Commun.*, **2021**, *12*, 7313.
- [4] Verma, P.; Rahimi, F. A.; Samanta, D; Kundu, A.; Dasgupta, J.; Maji, T. K.; *Angew. Chem. Int. Ed.*, **2022**, *61*, e202116094.
- [5] Ghosh, A.; Karmakar, S; Rahimi, F. A.; Roy, R.; Nath, S.; Gautam, U.; Maji, T. K. *ACS Appl. Mater. Interfaces*, **2022**, *14*, 25220.
- [6] Ghosh, A.; Surendran, D.; Barman, S.; Jena, R.; Bhakar, M.; Nath, S.; Sheet, G.; Zareba, J. K.; Maji, T. K., *Adv. Mater.*, **2025**, e11679